CHAPTER 3

Boolean Algebra

Contents

- Boolean Theorems
- DeMorgan's Theorem
- Universality of NAND and NOR Gates
- Alternate Logic Gate Representations
- Describing Logic Circuits Algebraically
- rules of evaluating a Boolean expression
- Minterms and Maxterms
- STANDARD FORMS

Boolean Algebra

\square Boolean algebra is the mathematics of digital systems.

- A basic knowledge of Boolean algebra is indispensable to the study and analysis of logic.
\square In the last lecture, Boolean operations and expressions in terms of their relationship to NOT, AND, OR, NAND, and NOR gates were introduced.

Associative Law

- The associative law
- The associative law of addition is written as follows for three variables:

$$
A+(B+C)=(A+B)+C
$$

- This law states that when ORing more than two variables, the result is the same regardless of the grouping of the variables.

Associative Law

The associative law of multiplication is written as follows for three variables:

$$
A(B C)=(A B) C
$$

- This law states that it makes no difference in what order the variables are grouped when ANDing more than two variables.

Distributive Law

The distributive law is written for three variables as follows:

$$
A(B+C)=A B+A C
$$

This law states that ORing two or more variables and then ANDing the result with a single variable is equivalent to ANDing the single variable with each of the two or more variabIes and then ORing the products.

Rules of Boolean Algebra

$$
\begin{array}{ll}
\text { 1. } A+0=A & \text { 7. } A \cdot A=A \\
\text { 2. } A+1=1 & \text { 8. } A \cdot \bar{A}=0 \\
\text { 3. } A \cdot 0=0 & \text { 9. } \overline{\bar{A}}=A \\
\text { 4. } A \cdot \mathrm{I}=A & \text { 10. } A+A B=A \\
\text { 5. } A+A=A & \text { 11. } A+\bar{A} B=A+B \\
\text { 6. } A+\bar{A}=1 & \text { 12. }(A+B)(A+C)=A+B C
\end{array}
$$

A, B, or C can represent a single variable or a combination of variables.

Rules for Boolean Algebra

$$
\mathbf{A}+\mathbf{A B}=\mathbf{A}
$$

- This rule can be proved by applying the distributive law, rule 2, and rule 4 as follows:

Proof

$$
\begin{aligned}
A+A B & =A(1+B) & & \text { Factoring (distributive law) } \\
& =A \cdot 1 & & \text { Rule } 2:(1+B)=1 \\
& =A & & \text { Rule } 4: A \cdot 1=A
\end{aligned}
$$

Rules of Boolean Algebra

The proof is shown in Table below, which shows the truth table and the resulting logic circuit simplification.

A	B	$A B$	$A+A B$
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1
1	4		

Rules for Boolean Algebra

Rule 11.

$$
A+A^{\prime} B=A+B
$$

This rule can be proved as follows:

$$
\begin{aligned}
A+\bar{A} B & =(A+A B)+\bar{A} B & & \text { Rule } 10: A=A+A B \\
& =(A A+A B)+\bar{A} B & & \text { Rule 7:A=AA} \\
& =A A+A B+A \bar{A}+\bar{A} B B & & \text { Rule 8: adding } A \bar{A}=0 \\
& =(A+\bar{A})(A+B) & & \text { Factoring } \\
& =1 \cdot(A+B) & & \text { Rule 6: } A+\bar{A}=1 \\
& =A+B & & \text { Rule 4: drop the 1 }
\end{aligned}
$$

- The proof is shown in Table 4--3, which shows the truth table and the resulting logic circuit simplification.

\boldsymbol{A}	\boldsymbol{B}	$\overline{A B}$	$A+\overline{A B}$	$A+B$
0	0	0	0	0
0	1	1	1	1
1	0	0	1	1
1	1	0	1	1
4				

Rules for Boolean Algebra

Rule 12.

$(A+B)(A+C)=A+B C$

Proof

$$
\begin{aligned}
(A+B)(A+C) & =A A+A C+A B+B C & & \text { Distributive law } \\
& =A+A C+A B+B C & & \text { Rule 7:AA=A} \\
& =A(1+C)+A B+B C & & \text { Factoring (distributive law) } \\
& =A \cdot 1+A B+B C & & \text { Rule 2: } 1+C=1 \\
& =A(1+B)+B C & & \text { Factoring (distributive law) } \\
& =A \cdot 1+B C & & \text { Rule 2: } 1+B=1 \\
& =A+B C & & \text { Rule } 4: A \cdot 1=A
\end{aligned}
$$

Truth Table Proof of Rule 12

| A | B | C | $A+B$ | $A+C$ | $(A+B)(A+C)$ | $B C$ | $A+B C$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 4 | A | |

Examples

Simplify the boolean functions to minimum number of literals,

$$
\begin{aligned}
& =X+X^{\prime} Y=\left(X+X^{\prime}\right)(X+Y)=X+Y \\
& =X\left(X^{\prime}+Y\right)=X X^{\prime}+X Y=0+X Y=X Y \\
& =X^{\prime} Y^{\prime} Z+X^{\prime} Y Z+X Y^{\prime} \\
& =X^{\prime} Z\left(Y^{\prime}+Y\right)+X Y^{\prime} \\
& =X^{\prime} Z+X Y^{\prime}
\end{aligned}
$$

DeMorgan's 'Theorem

口 ($x+y)^{\prime}=x^{\prime} \cdot y^{\prime}$
$\square(x \cdot y)^{\prime}=x^{\prime}+y^{\prime}$

- Example

$$
\begin{aligned}
\mathrm{X} & =\left[\left(\mathrm{A}^{\prime}+\mathrm{C}\right) \cdot\left(\mathrm{B}+\mathrm{D}^{\prime}\right)\right]^{\prime} \\
& =\left(\mathrm{A}^{\prime}+\mathrm{C}\right)^{\prime}+\left(\mathrm{B}+\mathrm{D}^{\prime}\right)^{\prime} \\
& =\left(\mathrm{AC}^{\prime}\right)+\left(\mathrm{B}^{\prime} \mathrm{D}\right) \\
& =\mathrm{AC}^{\prime}+\mathrm{B}^{\prime} \mathrm{D}
\end{aligned}
$$

Gate equivalencies and truth table of both the demorgan's
Theorem is as follow,

NAND

Negative-OR

Three Variables DeMorgan's Theorem

口 ($x+y+z)^{\prime}=x^{\prime} \cdot y^{\prime} \cdot z^{\prime}$
口 (xyz)' = $x^{\prime}+y^{\prime}+z^{\prime}$
ㅁ

EXAMPLE:

- Apply DeMorgan's theorems to each of the following expressions:
- (a) $\overline{(A+B+C) D}$
- (b) $\overline{A B C+D E F}$
- (c) $\mathrm{A} \overline{\mathrm{B}}+\overline{\mathrm{C}} \mathrm{D}+\mathrm{EF}$

Universality of NAND Gates

Universality of NOR Gates

INVERTER

Alternate Logic Gate

Representations

Boolean Expression for logic circuits

To derive the Boolean expression for a given logic circuit, begin at the left-most inputs and work toward the final output, writing the expression for each gate. For the example circuit in Figure below, the Boolean expression is determined as follows:

Simplification using Boolean Algera

- Many times in the application of Boolean algebra, you have to reduce a particular expression to its simplest form or change its form to a more convenient one to implement the expression most efficiently.
- The approach taken in this section is to use the basic laws, rules, and theorems of Boolean algebra to manipulate and simplify an expression.
- This method depends on a thorough knowledge of Boolean algebra and considerable practice in its application,

Example

Using Boolean algebra techniques, simplify this expression:

$$
A B+A(B+C)+B(B+C)
$$

Solution: The following is not necessarily the only approach.
Step 1: Apply the distributive law to the second and third terms in the expression, as follows:

$$
A B+A B+A C+B B+B C
$$

Step 2: Apply rule $7(B B=B)$ to the fourth term.

$$
A B+A B+A C+B+B C
$$

Step 3: Apply rule $5(A B+A B=A B)$ to the first two terms.

$$
A B+A C+B+B C
$$

Example cont.

Step 4: Apply rule $10(B+B C=B)$ to the last two terms.

$$
A B+A C+B
$$

Step 5: Apply rule $10(A B+B=B)$ to the first and third terms.

$B+A C$

- At this point the expression is simplified as much as possible.

Example cont.

Example

- Simplify the following Boolean expression to minimum number of literals,

$$
\left[A B^{\prime}(C+B D)+A^{\prime} B^{\prime}\right] C
$$

Solution

Step 1: Apply the distributive law to the terms within the brackets.

$$
\left(A B^{\prime} C+A B^{\prime} B D+A^{\prime} B^{\prime}\right) C
$$

Step 2: Apply rule $8(B B=0)$ to the second term within the parentheses.

$$
\left(A B^{\prime} C+A \cdot O \cdot D+A^{\prime} B^{\prime}\right) C
$$

Step 3: Apply rule 3 (A.O.D $=0$) to the second term within the parentheses.

$$
\left(A B^{\prime} C+O+A^{\prime} B^{\prime}\right) C
$$

Example cont

Step 4: Apply rule 1 (drop the 0) within the parentheses.

$$
\left(A B^{\prime} C+A^{\prime} B^{\prime}\right) C
$$

Step 5: Apply the distributive law.

$A^{\prime} \mathbf{C} C+A^{\prime} B^{\prime} C$

Step 6: Apply rule $7(C C=C)$ to the first term.

$$
A B^{\prime} C+A^{\prime} B^{\prime} C
$$

Step 7: Factor out $B^{\prime} C$.

$$
\mathbf{B}^{\prime} \mathbf{C}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)
$$

Step 8: Apply rule $6\left(A+A^{\prime}=1\right)$.

$$
B^{\prime} C .1=B^{\prime} C
$$

Example

Solve the expression to minimum number of literals

$A^{\prime} B C+A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C+A B C$

Solution:
$A^{\prime} B C+A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C+A B C$ $B C\left(A^{\prime}+A\right)+A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C$
BC. $1+A B^{\prime}\left(C^{\prime}+C\right)+A^{\prime} B^{\prime} C^{\prime}$
$B C+A B^{\prime} .1+A^{\prime} B^{\prime} C^{\prime}$
$B C+A B^{\prime}+A^{\prime} B^{\prime} C^{\prime}$
$B C+B^{\prime}\left(A+A^{\prime} C^{\prime}\right) \quad\left(A+A^{\prime} C^{\prime}=A+C^{\prime} \quad\right.$ Rule 11 $)$
$B C+B^{\prime}\left(A+C^{\prime}\right)$
$\mathbf{B C}+\mathbf{A} \mathbf{B}^{\prime}+\mathbf{B}^{\prime} \mathbf{C}^{\prime} \quad$ (Ans)

Self Questions

Simplify the Followings if possible,
$-(A B+A C)^{\prime}+A^{\prime} B^{\prime} C$
$-(A B)^{\prime}+(A C)^{\prime}+(A B C)^{\prime}$

- $A+A B+A B^{\prime} C$
$-\left(A^{\prime}+B\right) C+A B C$
$-A B^{\prime} C(B D+C D E)+A C^{\prime}$

Standard forms of Boolean expressions

- All Boolean expressions, regardless of their form, can be converted into either of two standard forms
- Sum-of-products (SOP) form
- Also called Minterms
- Product of Sum (POS) form
- Also called Maxterms
- Standardization makes the evaluation, simplification, and implementation of Boolean expressions much more systematic and easier.

Sum of Product (SOP) Form

- A product term was defined as a term consisting of the product (Boolean multiplication) of literals (variables or their complements).
- When two or more product terms are summed by Boolean addition. the resulting expression is a sum-ofproducts (SOP).
- Some examples are
- $A B+A B C$
- $\mathrm{ABC}+\mathrm{CDE}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}$
- $A^{\prime} B+A^{\prime} B C^{\prime}+A C$

SOP (Minterms)

- Also, an SOP expression can contain a singlevariable like,

$$
A+A^{\prime} B C^{\prime}+B C^{\prime} D^{\prime}
$$

- Domain of a Boolean Expression
- The domain of a general Boolean expression is the set of variables contained in the expression in either complemented or uncomplemented form.
- For example, the domain of the expression $A^{\prime} B+$ $A B^{\prime} C$ is the set of variables A, B, C.

SOP Form

- Truth Table for SOP form

x	y	z	Terms	
0	0	0	$\mathbf{x}^{\prime} \mathbf{y}^{\prime} \mathbf{z}^{\prime}$	m_{0}
0	0	1	$x^{\prime} y^{\prime} z$	m_{1}
0	1	0	$x y z$	m_{2}
0	1	1	$x y z$	m_{3}
1	0	0	$x y^{\prime} z^{\prime}$	m_{4}
1	0	1	$x y^{\prime} z$	m_{5}
1	1	0	$x y z$	m_{6}
1	1	1	$x y z$	m_{7}

Examples

- Convert each of the following Boolean expressions to SOP form,
$-\mathrm{AB}+\mathrm{B}(\mathrm{CD}+\mathrm{EF})$
$=A B+B C D+B E F$
$-(A+B)(B+C+D)$
$=A B+A C+A D+B B+B C+B D$
$-\left[(A+B)^{\prime}+C\right]^{\prime}$
$=\left((A+B)^{\prime}\right)^{\prime} \mathrm{C}^{\prime}=(\mathrm{A}+\mathrm{B}) \mathrm{C}^{\prime}$
$=A C^{\prime}+B C^{\prime}$

Problem: Convert $A^{\prime} B C^{\prime}+\left(A+B^{\prime}\right)\left(B+C^{\prime}+A B^{\prime}\right)$ to SOP form.

Minterms and Maxterms

$x y$	z	Minterms			Maxterms	
			Term	Designation		Term
0	0	$x^{\prime} y^{\prime} z^{\prime}$	m_{0}	$x+y+z$	M_{0}	
0	0	1	$x^{\prime} y^{\prime} z$	$m i$	$x+y+z^{\prime}$	M_{1}
0	1	0	$x^{\prime} y z$	m_{2}	$x+y^{\prime}+z$	M_{2}
0	1	1	$x^{\prime} y z$	m_{3}	$x+y^{\prime}+z^{\prime}$	M_{3}
1	0	0	$x y^{\prime} z^{\prime}$	m_{4}	$x^{\prime}+y+z$	M_{4}
1	0	1	$x y^{\prime} z$	m_{5}	$x^{\prime}+\mathrm{y}+z^{\prime}$	M_{5}
1	1	0	$x y z^{\prime}$	m_{6}	$x^{\prime}+y^{\prime}+z$	M_{6}
1	1	1	$x y z$	m_{7}	$x^{\prime}+y^{\prime}+z^{\prime}$	M_{7}

Canonical FORMS

- There are two types of canonical forms:
- the sum of minterms
- The product of maxterms

Sum of minterms

$\square f_{1}=x^{\prime} y^{\prime} z+x y^{\prime} z^{\prime}+x y z=m_{1}+m_{4}+m_{7}$
$\square \mathrm{f}_{2}=x^{\prime} y z+x y^{\prime} z+x y z^{1}+x y z=m_{3}+m_{5}+$ $m_{6}+m_{7}$

x	y	Z	f_{1}	f_{2}
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Product of maxterms

\square The complement of f_{1} is read by forming a minterm for each combination that produces a 0 as:
$\square f_{1}{ }^{\prime}=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x^{\prime} y z+x y^{\prime} z+x y z^{\prime}$
口 $f_{1}=(x+y+z)\left(x+y^{\prime}+z\right)\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y+\right.$ z) $\left(x^{\prime}+y^{\prime}+z\right)$
$=$ Mo M2 M3 M5 M6

- Similarly
- f2 = ?

Example: Sum of Minterms

\square Express the Boolean function $F=A+B^{\prime} C$ in a sum of minterms.

- $F=A+B^{\prime} C$
$=A B C+A B C^{\prime}+A B^{\prime} C+A B^{\prime} C^{\prime}+A B^{\prime} C+A^{\prime} B^{\prime} C$

Example: Product of Maxterms

- Express the Boolean function $F=x y^{\prime}+y z$ in a product of maxterm form.

$$
\begin{aligned}
\square F & =x y^{\prime}+y z=\left(x y^{\prime}+y\right)\left(x y^{\prime}+z\right)=(x+y)\left(y^{\prime}+y\right)(x+z)\left(y^{\prime}+z\right) \\
& =(x+y)(x+z)\left(y^{\prime}+z\right)=\left(x+y+z z^{\prime}\right)\left(x+y y^{\prime}+z\right)\left(x x^{\prime}+y^{\prime}+z\right) \\
& =(x+y+z)\left(x+y+z^{\prime}\right)(x+y+z)\left(x+y^{\prime}+z\right)\left(x+y^{\prime}+z\right)\left(x^{\prime}+y^{\prime}+z\right) \\
& =(x+y+z)\left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z\right)\left(x^{\prime}+y^{\prime}+z\right) \\
& =M_{0} M_{1} M_{2} M_{6} \\
& =\Pi(0,1,2,6)
\end{aligned}
$$

STANDARD FORMS

- There are two types of standard forms:
- the sum of products (SOP)
- The product of sums (POS).

Sum of Products

- The sum of products is a Boolean expression containing AND terms, called product terms, of one or more literals each. The sum denotes the ORing of these terms.
口 $F=x y+z+x y^{\prime} z^{\prime}$. (SOP)

Product of Sums

\square A product of sums is a Boolean expression containing OR terms, called sum terms. Each term may have any number of literals. The product denotes the ANDing of these terms.
$\square F=z(x+y)(x+y+z)(P O S)$
$\square \mathrm{F}=\mathrm{x}$ ($\mathrm{xy} \mathrm{y}^{\prime}+\mathrm{zy}$) (nonstandard form)

QUESTIONS?

