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Boolean Algebra 

 Boolean algebra is the mathematics of 
digital systems.  

 A basic knowledge of Boolean algebra is 
indispensable to the study and analysis of 
logic. 

 In the last lecture, Boolean operations and 
expressions in terms of their relationship 
to NOT, AND, OR, NAND, and NOR gates 
were introduced.  
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Associative Law 
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Associative Law 
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Distributive Law 

6 



Rules of Boolean Algebra 
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Rules for Boolean Algebra 
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Rules of Boolean Algebra 
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Rules for Boolean Algebra 
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Rules for Boolean Algebra  
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Examples 
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DeMorgan's Theorem 

 (x+y)' = x' • y' 

 (x•y)' = x' + y' 

 Example 

 
X = [(A'+C) • (B+D')]' 

 = (A'+C)' + (B+D')'  

 = (AC') + (B'D) 

 = AC' + B'D 
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Three Variables DeMorgan's Theorem 

 (x+y+z)' = x' • y' • z' 

 (xyz)' = x' + y' + z‘ 

  
EXAMPLE: 

 Apply DeMorgan’s theorems to each of the 
following expressions: 

 (a)  

 (b)  

 (c)  

 

 

D)CBA( 

DEFABC 

EFDCBA 
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Universality of NAND Gates 
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Universality of NOR Gates 
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Alternate Logic Gate 
Representations 
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Boolean Expression for logic circuits 
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Simplification using Boolean Algera 
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Example 
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Example cont. 
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Example cont. 
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Example  
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Example cont 
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Example 
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Self Questions 

29 



Standard forms of Boolean expressions 
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Sum of Product (SOP) Form 
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SOP (Minterms) 
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SOP Form 
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Examples 
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Minterms and Maxterms 
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Canonical FORMS 

 There are two types of canonical forms:  

 the sum of minterms 

 The product of maxterms 
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Sum of minterms 

 f1 = x'y'z + xy'z' + xyz = m1 + m4 +m7  

 f2 = x'yz + xy'z + xyz1 + xyz = m3 + m5+ 
m6 + m7 

 x y Z f1 f2 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 
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Product of maxterms 

 The complement of f1 is read by forming a 
minterm for each combination that 
produces a 0 as: 

 f1
’
=x’y’z’ + x’yz’ + x’yz + xy’z + xyz’ 

 f1 = (x + y + z)(x + y' + z)(x + y' + z' )(x’+ y + 
z)(x’ + y' + z) 

      = Mo  M2 M3 M5 M6 

 Similarly  

 f2 = ? 
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Example: Sum of Minterms 

 Express the Boolean function F = A + B'C 
in a sum of minterms. 

 F=A+B'C 

    = ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C 
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Example: Product of Maxterms 

 Express the Boolean function F =xy' + yz in 
a product of maxterm form. 

 F = xy' + yz = (xy' + y)(xy' + z) = (x + y)(y' + y)(x + z)(y' + z) 

    = (x + y)(x + z)(y' + z) = (x + y + zz')(x + yy' + z)(xx' + y' + z) 

    = (x + y + z)(x + y + z')(x+y + z)(x+y’+ z)(x + y' + z)(x'+y'+z) 

    = (x + y + z)(x + y + z') (x + y' + z) (x'+y'+z) 

    = M0 M1 M2 M6 

    = Π (0,1,2,6) 
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STANDARD FORMS 

 There are two types of standard forms:  

 the sum of products (SOP)  

 The product of sums (POS). 
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Sum of Products 

 The sum of products is a Boolean 
expression containing AND terms, called 
product terms, of one or more literals 
each. The sum denotes the ORing of these 
terms. 

 F = xy + z +xy'z'. (SOP)  
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Product of Sums 

 A product of sums is a Boolean expression 
containing OR terms, called sum terms. 
Each term may have any number of 
literals. The product denotes the ANDing 
of these terms.  

 F = z(x+y)(x+y+z) (POS) 

 F = x  (xy' + zy)      (nonstandard form) 
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QUESTIONS? 


